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Fig. 2. FPCN fractionation based on internetwork connectivity with the DN and DAN. (A) Hierarchical clustering results based on intermodular connections.
FPCN nodes cluster into two separate families. (B) Surface rendering of FPCN nodes from the Yeo parcellation, color-coded based on the hierarchical clus-
tering results. (C) Accuracy of the support vector machine classifier in distinguishing FPCNA and FPCNB FC patterns with the DN and DAN during each con-
dition. Dotted line represents baseline accuracy (50%). (D) Surface rendering of FPCN nodes from the Gordon parcellation, color coded based on the
hierarchical clustering results in SI Appendix, Fig. S3B. Abbreviations are the same as in Fig. 1.
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The frontoparietal control network (FPCN) plays a central role in
executive control. It has been predominantly viewed as a unitary
domain general system. Here, we examined patterns of FPCN
functional connectivity (FC) across multiple conditions of varying
cognitive demands, to test for FPCN heterogeneity. We identified
two distinct subsystems within the FPCN based on hierarchical
clustering and machine learning classification analyses of within-
FPCN FC patterns. These two FPCN subsystems exhibited distinct
patterns of FC with the default network (DN) and the dorsal
attention network (DAN). FPCNA exhibited stronger connectivity
with the DN than the DAN, whereas FPCNB exhibited the opposite
pattern. This twofold FPCN differentiation was observed across four
independent datasets, across nine different conditions (rest and
eight tasks), at the level of individual-participant data, as well as
in meta-analytic coactivation patterns. Notably, the extent of FPCN
differentiation varied across conditions, suggesting flexible adapta-
tion to task demands. Finally, we used meta-analytic tools to iden-
tify several functional domains associated with the DN and DAN
that differentially predict activation in the FPCN subsystems. These
findings reveal a flexible and heterogeneous FPCN organization that
may in part emerge from separable DN and DAN processing
streams. We propose that FPCNA may be preferentially involved in
the regulation of introspective processes, whereas FPCNB may
be preferentially involved in the regulation of visuospatial
perceptual attention.

frontoparietal control network | default network | dorsal attention
network | cognitive control | functional connectivity

Modern neuroscientific investigations have demonstrated
that frontoparietal cortices contribute to executive control

and adaptive behavior via the flexible encoding of task demands
and desired outcomes and the top-down modulation of processing
in other brain regions (1–8). Despite this progress, we lack a clear
understanding of the functional organization of frontoparietal
cortex, a critical step in discerning the network architecture un-
derlying executive control. Distributed frontoparietal regions often
activate together in response to diverse task demands, suggesting
that they may function as a unified, domain general control sys-
tem, referred to as the frontoparietal control network (FPCN) or
“multiple demand” system (4). It is possible, however, that a finer
level of internal organization may be present within the FPCN,
with distinct subsystems contributing to different types of execu-
tive control. Progress has been made in understanding other
networks (e.g., default network) via fractionating them into dis-
tinct subsystems with unique functional roles (9). Existing models
have distinguished the FPCN from networks centered on insular
and cingulate cortices (e.g., “salience” and cingulo-opercular

networks) (10, 11). However, possible functional heterogeneity
within the FPCN has not been explored in detail.
In a seminal paper, Yeo et al. (12) introduced a 7-network

parcellation that has had a considerable influence on the field of
network neuroscience. In this 7-network parcellation, the FPCN
appears as a uniform network. However, Yeo et al. also reported
a fine-grained 17-network parcellation that has received much
less attention in the literature. In this 17-network solution, the
FPCN appears to be segregated into two distinct subsystems (see
Yeo et al., figure 9). [The Yeo et al. 17-network parcellation
actually divides the unified FPCN into three separate subnet-
works; however, one subnetwork is only composed of two regions
(the posterior cingulate and precuneus) and does not include a
frontal component. As such, it is not a frontoparietal system per
se, and is not examined here.] Moreover, recent work suggests
that a FPCN fractionation can be observed in the data of indi-
vidual participants (13). These findings represent important
empirical evidence for heterogeneity within this network. How-
ever, prior work has not systematically investigated the basis of
this FPCN fractionation or its functional implications.

Significance

The frontoparietal control network (FPCN) contributes to ex-
ecutive control, the ability to deliberately guide action based
on goals. While the FPCN is often viewed as a unitary domain
general system, it is possible that the FPCN contains a fine-
grained internal organization, with separate zones involved in
different types of executive control. Here, we use graph theory
and meta-analytic functional profiling to demonstrate that the
FPCN is composed of two separate subsystems: FPCNA is con-
nected to the default network and is involved in the regulation
of introspective processes, whereas FPCNB is connected to the
dorsal attention network and is involved in the regulation of
perceptual attention. These findings offer a distinct perspective
on the systems-level circuitry underlying cognitive control.
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Here, we used a hypothesis-driven approach together with graph
theoretical analyses to examine the possibility that the fine-grained
internal organization of the FPCN may be driven by specific
connectional patterns as part of a “distance from sensorimotor
processing” principle that defines global brain organization (14–17).
The FPCN is extensively interconnected with both the default
network (DN) and dorsal attention network (DAN) (18)—large-scale
systems that contribute to distinct and sometimes competing
modes of processing (19–23). The DAN has a close relationship
with sensorimotor regions (12) and plays a key role in visuo-
spatial perceptual attention (24–26). It contains neurons with
spatially organized receptive fields (25, 27) that are activated
during saccades (28), shifts of attention to salient objects in the
external environment (29–31), and during visually guided
reaching actions (24, 32). In contrast, the DN contributes to
introspective processes that are, in some cases, independent
from sensory input (14, 21, 33–35). Specifically, the DN is in-
volved in mentalizing (36), autobiographical memory (37),
spontaneous cognition (38–41), self-referential processing (42),
and high-level aspects of emotion (34, 43, 44). Correspondingly,
it has been demonstrated that the DN is further removed spa-
tially and functionally from sensorimotor processing than the
DAN (14). We hypothesized that the distinct DN and DAN
processing streams may be carried forward into the organization
and functions of the FPCN.
We first examined the network architecture of the FPCN using

hierarchal clustering to determine whether FPCN nodes separate
into distinct subsystems based on intramodular (within-network)
connections. We then determined whether the observed subsys-
tems exhibit topographically organized functional connections with
the DN and DAN. That is, we predicted that FPCN regions
coupled with the DN would be spatially distinct from FPCN re-
gions coupled with the DAN. We investigated functional coupling
patterns during rest and several different tasks, which allowed us to
look for differences in coupling patterns that persist across dif-
ferent cognitive states. Second, to determine the generalizability of
a putative FPCN fractionation related to the DN and DAN, we
examined functional connectivity (FC) patterns in three additional
independent datasets, and we examined meta-analytic coactivation
patterns across 11,406 neuroimaging studies within the Neurosynth
database (45). Third, we performed an individual-level network
mapping analysis to examine the extent of interindividual vari-
ability in the spatial organization of FPCN subsystems. Fourth, we
examined how the putative FPCN fractionation relates to task-
related flexibility in FC patterns. Prior work has shown that net-
work organization changes across time and context (46–50), with
FPCN regions exhibiting considerable flexibility (7, 51, 52), con-
sistent with a role in the context-dependent regulation of thought
and perception (4, 6). Here, we investigated the relationship be-
tween FPCN heterogeneity and task-related flexibility. Finally, in
an exploratory analysis, we used Neurosynth topic mapping to
identify functional domains that differentially predict activation in
the FPCN subsystems.
Our primary dataset involved data collected from 24 partici-

pants that underwent fMRI scanning during six separate condi-
tions designed to elicit mental states similar to those frequently
experienced in everyday life. These six conditions varied in the
amount of introspective thought and perceptual demands, and
included: (i) rest; (ii) movie viewing; (iii) analysis of artwork;
(iv) social preference shopping task; (v) evaluation-based in-
trospection; and (vi) acceptance-based introspection (see Materials
and Methods for details). Additionally, we examined FC patterns in
three other datasets involving traditional cognitive control tasks
that are known to activate the FPCN: (i) rule use; (ii) Stroop; and
(iii) 2-back working memory. Data were processed using standard
techniques (53), and we did not use global signal regression, so as
to avoid distorting FC values (54).

Results
Evidence for Distinct FPCN Subsystems. Graph theory represents
complex systems such as the brain as a graph consisting of a set of
nodes (regions) and edges (connections between nodes), and al-
lows for a quantitative description of network properties (55, 56).
We calculated the time-series correlation between nodes spanning
the DAN, DN, and FPCN based on the Yeo parcellation (12). We
first analyzed the organization of FPCN nodes based solely on
intramodular (within-network) FC patterns. We used hierarchical
clustering to organize nodes into a tree structure based on the
similarity of their FC profiles. The analysis revealed two clusters or
subsystems that we refer to as FPCNA and FPCNB (Fig. 1 A and B
and SI Appendix, Fig. S1). FPCNA and FPCNB nodes were, to
some extent, spatially interleaved, similar to observations in prior
work (12, 13). To examine whether the distinction between
FPCNA and FPCNB FC patterns were consistent across partici-
pants, we used a linear support vector machine (SVM) classifier to
distinguish FPCNA and FPCNB intramodular FC patterns in new
participants based on data from other participants. The SVM at-
tempts to find a hyperplane that best separates the two classes of
data. We used k-fold cross-validation (k = 4), where the classifier
was trained on data from 75% of participants, then tested on
unlabeled data from the remaining 25% of participants. Using this
procedure, we found highly accurate (>90%) discrimination of the
FPCNA and FPCNB during every condition in the primary data-
set (Fig. 1C and SI Appendix, Fig. S2). Permutation testing in
which FPCN subsystem labels were randomly shuffled revealed

Fig. 1. FPCN fractionation based on intramodular connectivity. (A) Hierar-
chical clustering results based on intramodular (within-FPCN) connections.
FPCN nodes cluster into two separate families. (B) Surface rendering of FPCN
nodes from the Yeo parcellation, color-coded based on the hierarchical
clustering results. (C) Accuracy of the support vector machine classifier in
distinguishing FPCNA and FPCNB within-network FC patterns during each
condition. Dotted line represents baseline accuracy (50%). (D) Surface ren-
dering of FPCN nodes from the Gordon parcellation, color-coded based on
the hierarchical clustering results in SI Appendix, Fig. S1B. Abbreviations:
aIFS, anterior inferior frontal sulcus; aIPL, anterior inferior parietal lobule;
IPS, intraparietal sulcus; MFG, middle frontal gyrus; MTG, middle temporal
gyrus; pIFS, posterior inferior frontal sulcus; pMTG, posterior middle tem-
poral gyrus; pre-SMA, presupplementary motor area; pSFS, posterior supe-
rior frontal gyrus; RLPFC, rostrolateral prefrontal cortex.
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chance level discrimination (∼50% accuracy; Materials and
Methods). A FPCN fractionation was also observed when using
an independent set of nodes and network definitions based on
the Gordon parcellation (57) (Fig. 1D) or Power parcellation
(58) (SI Appendix, Fig. S1).
To further elucidate the origin of heterogeneity within the

FPCN, we examined FPCN clustering patterns based strictly on
FC with the DN and DAN. The results again revealed two dis-
tinct subsystems, identical to the structure observed based on
intramodular connections (Fig. 2 and SI Appendix, Fig. S3). This
suggests that the internal organization of the FPCN may be
specifically related to connectional patterns with the DN and
DAN. This provides a greater level of detail in understanding
FPCN heterogeneity that goes beyond prior parcellations based
on whole-brain FC patterns. The separation between FPCNA
and FPCNB based on FC with the DN and DAN was highly
consistent across participants, as evidenced by highly accurate
discrimination when using a linear SVM classifier with fourfold
cross-validation (Fig. 2C and SI Appendix, Fig. S4).

Differential Coupling Patterns with the DN and DAN. To visualize
the basis of the FPCN fractionation, we used the Kamada–
Kawai energy algorithm (59), which produces spring-embedded
layouts that minimize the geometric distances of nodes based on
their topological distances in the graph. Nodes are pulled to-
gether or pushed apart based on the strength of functional
connections rather than anatomical locations. Visualization of
the network topology revealed that FPCNA and FPCNB nodes
were not intermingled, but rather, separated, with FPCNA
nodes pulled toward DN nodes and FPCNB nodes pulled toward
DAN nodes (Fig. 3).
The group-averaged correlation matrix revealed that FPCNA

nodes exhibited positive correlations with DN nodes and no
correlation or negative correlations with DAN nodes, whereas
FPCNB nodes exhibited the opposite pattern (Fig. 4A; see also SI
Appendix, Fig. S7). Furthermore, FC fingerprints (Fig. 4B) and
whole-brain seed-based correlation maps (SI Appendix, Fig. S5)

revealed that spatially adjacent FPCNA and FPCNB nodes
exhibited divergent functional coupling patterns with DN and
DAN regions. Thus, distinct FPCN subsystems can be delineated
based on topographically organized functional connections with
the DN and DAN.
SI Appendix, Fig. S6 illustrates the mean strength of FC be-

tween each pair of networks. In every condition we found a FPCN
Subsystem × DN/DAN interaction [all F(1, 22) > 70.49, P <
0.001]. FPCNA–DN coupling was stronger than FPCNB–DN
coupling [paired t tests, all t(23) > 8.62, P < 0.001, Bonferroni
corrected], whereas FPCNB–DAN coupling was stronger than
FPCNA–DAN coupling [all t(23) > 5.70, P < 0.001, Bonferroni
corrected]. To further quantify the strength of asymmetrical FC

Fig. 2. FPCN fractionation based on inter-network connectivity with the DN and DAN. (A) Hierarchical clustering results based on intermodular connections.
FPCN nodes cluster into two separate families. (B) Surface rendering of FPCN nodes from the Yeo parcellation, color-coded based on the hierarchical clus-
tering results. (C) Accuracy of the support vector machine classifier in distinguishing FPCNA and FPCNB FC patterns with the DN and DAN during each con-
dition. Dotted line represents baseline accuracy (50%). (D) Surface rendering of FPCN nodes from the Gordon parcellation, color coded based on the
hierarchical clustering results in SI Appendix, Fig. S3B. Abbreviations are the same as in Fig. 1.

Fig. 3. Visualization of the network topology. FPCN nodes are color coded
based on the hierarchical clustering analysis of intramodular connections. For
each task, the group averaged FC matrix was thresholded to retain connec-
tions with z(r) > 0.15, and then submitted to the Kamada–Kawai energy al-
gorithm, implemented in Pajek software. This algorithm produces spring-
embedded layouts that minimize the geometric distances of nodes based on
their topological distances in the graph. Well-connected nodes are pulled to-
ward each other, whereas weakly connected nodes are pushed apart in a
manner that minimizes the total energy of the system. In every context, there
is a separation of FPCN nodes, with FPCNA nodes exhibiting preferential FC
with DN nodes and FPCNB nodes exhibiting preferential FC with DAN nodes.
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for each subsystem, we computed a “selectivity index” (SI), which
reflected the relative degree of coupling with the DN versus DAN
(Materials and Methods) (Fig. 5). The SI revealed that FPCNA
nodes were more connected to the DN than DAN in every con-
dition [all t(23) > 4.07, P < 0.001, Bonferroni corrected].
In contrast, FPCNB nodes were more connected to the DAN
than DN in every condition [all t(23) > 3.37, P < 0.02, Bonferroni
corrected]. Averaged across tasks, every individual FPCN node
exhibited a significant SI [one-sample t tests, all t(23) > 3.23, P <
0.05, false discovery rate (FDR) corrected], with the exception of
the right posterior middle temporal gyrus (pMTG) (P = 0.61,
FDR corrected) (SI Appendix, Fig. S7). Thus, asymmetrical FC
with the DN versus DAN is widely present throughout the
FPCN. The right middle frontal gyrus (MFG; area 9/46) exhibited
the strongest SI, while the right pMTG exhibited the weakest SI,
suggesting a more domain general profile. Averaged across tasks,
asymmetrical FC was stronger for FPCNA than FPCNB [paired
t tests, t(23) = 2.24, P = 0.057], however, this effect was largely
driven by the movie condition (P = 0.003, Bonferroni corrected;
all other conditions, P > 0.05, Bonferroni corrected). While the
DN core subsystem was our main focus, for completeness we also
report the strength of asymmetry involving the other DN subsys-
tems in SI Appendix, Fig. S8.

Replication and Generalizability of Differential Coupling Patterns.
We next examined whether the fractionation would replicate in
three independent datasets involving demanding cognitive control
tasks that frequently activate the FPCN: rule use; Stroop; and
2-back working memory. We found a robust FPCN Subsystem ×
DN/DAN interaction in each task [rule use, F(1, 13) = 75.10, P <
0.001; Stroop, F(1, 26) = 144.36, P < 0.001; N-back, F(1, 36) =
58.66, P < 0.001]. In addition, we observed a significant selectivity
index in each task, indicating that FPCNA was preferentially
coupled with the DN (all t > 3.61, P < 0.003, Bonferroni cor-
rected), and FPCNB was preferentially coupled with the DAN (all
t > 3.92, P < 0.002, Bonferroni corrected) (Fig. 5C).
To examine the generalizability of the FPCN fractionation, we

performed an automated meta-analysis on coactivation patterns
across the wide range of tasks within the Neurosynth database
(45). The results demonstrated that there are notable differences
in coactivation with other parts of the brain between the two
FPCN subsystems, consistent with our predictions (Fig. 6). In
particular, FPCNA coactivates to a greater extent with the de-
fault network [e.g., rostromedial prefrontal cortex (PFC)], pos-
terior cingulate cortex, and lateral temporal cortex), than does
FPCNB. There was less evidence for a distinction with respect to
coactivation with the DAN. However, FPCNB does coactivate to
a greater extent with portions of DAN around the superior pa-
rietal lobule and frontal eye fields.

Fig. 4. Differential FPCN subsystem coupling patterns. (A) Group-averaged
correlation matrix reflecting mean z(r) values across the six task conditions,
using Yeo parcellation nodes. (B) FC fingerprints for each FPCN node. In each
case, the scale goes from z(r) = −0.3–0.5, in increments of 0.2. (B, Top) FPCNA

nodes demonstrate a clear leftward bias, reflecting stronger FC with DN
nodes (yellow data points). (B, Bottom) FPCNB nodes show a rightward bias,
reflecting stronger FC with DAN nodes (green data points). FPCNA and FPCNB

fingerprints are highly divergent for each pair of spatially adjacent nodes
(Top vs. Bottom fingerprint). Abbreviations: aIFS, anterior inferior frontal
sulcus; aIPL, anterior inferior parietal lobule; aMT, anterior middle temporal
region.; FEFs, frontal eye fields; IPS, intraparietal sulcus; LTC, lateral temporal
cortex; MFG, middle frontal gyrus; MTG, middle temporal gyrus; PCC, pos-
terior cingulate cortex; pIFS, posterior inferior frontal sulcus; pIPL, posterior
inferior parietal lobule; pMTG, posterior middle temporal gyrus; PrCv, ven-
tral precentral cortex; RLPFC, rostrolateral prefrontal cortex; RMPFC, rostromedial
prefrontal cortex; SFS, superior frontal suclus.

Fig. 5. Selectivity index (SI) for the FPCN subsystems during each condition,
using Yeo parcellation nodes. The SI reflects mean functional connectivity
(FC) with DN nodes minus mean FC with DAN nodes. (A) Tasks that involve
external perceptual attention. (B) Tasks that involve internal attention.
(C) Cognitive control tasks from the replication samples. Data for each
participant (gray dots), with mean (white line), 95% CI (light-red shaded
areas) and 1 SD (blue lines).
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Individual Network Mapping. We next used hierarchical clustering
to examine FPCN organization in each individual participant.
This served to: (i) illustrate the extent of intersubject variability
in the spatial organization of the FPCN subsystems and (ii) rule
out the possibility that the group-level findings described thus far
are biased by errors in spatial normalization. Voxels near the
border of different networks in normalized space may potentially
include a mixture of networks across different participants, and
this may bias group-level results in the direction observed here,
because FPCNA is adjacent to the DN, and FPCNB is adjacent to
the DAN. This possibility can be ruled out if a fractionation is
observed at the level of individual participants because there is
complete segregation of all four networks. Importantly, the re-
sults demonstrated a fractionation of FPCN nodes into two
clusters in every individual (Fig. 7 and SI Appendix, Fig. S9).
While the spatial arrangement of FPCNA and FPCNB varies to
some extent across individuals (as expected), there is a large
degree of consistency across a number of regions. Moreover, in
each case, FPCNA nodes are coupled with the DN but not DAN,
whereas FPCNB nodes are coupled with the DAN but not DN
(SI Appendix, Table S1). In most individuals, the rostrolateral
prefrontal cortex, anterior inferior parietal lobule, presupple-
mentary motor area, and middle temporal gyrus belong to
FPCNA, whereas the intraparietal sulcus, posterior inferior
frontal sulcus/inferior frontal junction (IFS/IFJ), posterior su-
perior frontal sulcus, and left posterior middle temporal gyrus
belong to FPCNB. Thus, differential connectivity with the DN
and DAN is a property of FPCN organization and not driven by
errors in spatial normalization.

FPCN Heterogeneity and Task-Related Flexibility. Prior work has
shown that FPCN FC patterns exhibit a high-level of task-related
flexibility (5, 7, 51). We examined how differential coupling
patterns relate to FPCN flexibility. We computed a task-related
“flexibility index” reflecting the extent to which FC patterns
changed more across conditions than within conditions (i.e.,
from the first half to the second half of each condition). This
measure of flexibility pertains to context and is different from the
measure used by Bassett et al., which pertains to temporal flex-
ibility (60). One-sample t tests revealed that both subsystems
exhibited a significant flexibility index, revealing task-dependent
reconfiguration of FC patterns [FPCNA, t(22) = 8.26, P < 0.001;
FPCNB, t(22) = 9.35, P < 0.001] (Fig. 8A). There was no dif-
ference between FPCNA and FPCNB in the strength of task-

related flexibility (paired t test, P = 0.31). Not only did overall
FC patterns with the DN and DAN change across conditions for
both subsystems, but so did the magnitude of the selectivity index—
the relative strength of DN to DAN connections, evidenced by
a main effect of task [FPCNA, F(5, 100) = 5.40, P < 0.001;
FPCNB, F(5, 100) = 6.00, P < 0.001]. We found that the right
IFS/IFJ node exhibited the greatest task-related flexibility (Fig.
8B). This region was positively coupled with the DAN in every
condition, but more so in conditions that required external
perceptual attention. Additionally, the IFS/IFJ flexibly shifted
from negative coupling with DN nodes during task conditions
involving external perceptual attention, to positive coupling with
some DN nodes during task conditions that involved internal
attention (Fig. 8 C and D). These observations were reflected in
a significant task condition (internal vs. external) × network (DN
vs. DAN) interaction, F(8, 176) = 19.49, P < 0.001. Thus, while
FPCNA and FPCNB exhibited differential coupling patterns in
every condition, the magnitude of this effect flexibly adapted to
task demands.

Are FPCNA and FPCNB Subsystems of the Same Network or Extensions
of the DN and DAN? To determine whether FPCNA and FPCNB
should be considered subsystems within the same network or ex-
tensions of the DN and DAN, we compared mean between-
network and between-subsystem FC patterns using paired t tests.
During the traditional cognitive control tasks, FPCNA and FPCNB
exhibited stronger coupling with each other than with the DN
[rule use, t(13) = 3.11, P = 0.075, Bonferroni corrected; Stroop,
t(26) = 6.50, P < 0.001, Bonferroni corrected; 2-back, t(36) = 3.26,
P = 0.022, Bonferroni corrected] or DAN [rule use, t(13) = 5.76,
P < 0.001, Bonferroni corrected; Stroop, t(26) = 6.82, P < 0.001,
Bonferroni corrected; 2-back, t(36) = 4.20, P = 0.004, Bonferroni
corrected] (Fig. 9). However, the picture is less clear during the
other conditions that involved a range of processing demands.
Coupling between FPCNA and FPCNB was weaker than FPCNA–

DN coupling during the movie [t(22) = 4.30, P < 0.05, Bonferroni

Fig. 6. Meta-analytic coactivation contrasts. Red voxels indicate signifi-
cantly greater coactivation with FPCNB than FPCNA. Blue voxels indicate
significantly greater coactivation with FPCNA than FPCNB. Images were
whole-brain corrected using a false discovery rate of q = 0.05.

Fig. 7. FPCN organization in four individual participants. We color coded 66
FPCN nodes based on the results of a hierarchical clustering analysis. See SI
Appendix for details about the nodes and analysis, and SI Appendix, Fig. S9
for maps of every participant.
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corrected] and shopping conditions [t(23) = 3.27, P < 0.05, Bon-
ferroni corrected] but not different during the other conditions
(P > 0.05, Bonferroni corrected). Coupling between FPCNA and
FPCNB was stronger than FPCNB–DAN coupling during rest
[t(23) = 9.82, P < 0.05, Bonferroni corrected], evaluation [t(23) =
5.15, P < 0.05, Bonferroni corrected], and acceptance [t(23) =
7.59, P < 0.05, Bonferroni corrected], but not different during
the other conditions (P > 0.05, Bonferroni corrected). These
findings suggest that the extent to which the FPCNA and FPCNB

cluster together versus with the DN/DAN depends on current
processing demands.

Meta-Analytic Functional Differentiation. To examine whether the
FPCN subsystem distinctions in network architecture are func-
tionally meaningful, we used a naive Bayes classifier to determine
which Neurosynth topics were preferentially associated with each
subsystem. We plotted the loading of each topic onto each sub-
system along with bootstrapped 95% confidence intervals (Fig. 10
and SI Appendix, Fig. S10). As expected, both subsystems showed
high loadings to executive function topics, including working
memory, switching, and conflict. Notably, there were also dis-
tinctions. The topics “mentalizing” and “emotion” loaded more
strongly onto FPCNA than FPCNB. In contrast, “attention,” “ac-
tion,” “reading,” and “semantics” loaded more strongly onto
FPCNB than FPCNA. These differences are consistent with the
idea that FPCNA is biased toward functions that are associated

with the DN, whereas FPCNB is biased toward functions that are
associated with the DAN.

Discussion
The current study provides evidence of highly reliable hetero-
geneity within the FPCN that is related to connectional patterns
and functions associated with the DN and DAN—large-scale
systems that contribute to introspective processes and visuospa-
tial perceptual attention, respectively. To summarize: (i) hier-
archical clustering revealed a separation of FPCNA and FPCNB
nodes based on intramodular connections and intermodular
connections with the DN and DAN; (ii) a linear SVM classifier
was able to distinguish FPCNA and FPCNB FC patterns with
remarkable accuracy; (iii) differential coupling patterns were
replicated in three additional datasets; (iv) in every individual
participant we observed a fractionation of the FPCN into two
subsystems based on FC with the DN and DAN; (v) Neurosynth
meta-analytic coactivation patterns revealed differential task-
based coactivation with the DN and DAN; and (vi) there were
differences in the task domains that predicted activation in
FPCNA and FPCNB. These findings offer a distinct perspective
on the systems-level circuitry underlying executive control.

Functional Organization of the FPCN. Brain networks can be un-
derstood within the context of a hierarchical gradient of pro-
cessing. At one extreme, unimodal sensorimotor regions process
concrete sensory and action-related information, while at the

Fig. 8. Task-related flexibility of functional connectivity patterns. (A) Flexibility index reflecting the extent to which FC with the DN and DAN changes across
contexts, using the Yeo parcellation nodes. Both FPCNA and FPCNB exhibit significant flexibility. (B) Flexibility index for each FPCN node. The right IFS/IFJ
region of interest exhibited the greatest FC flexibility across conditions, consistent with prior work showing that the IFS/IFJ encodes task demands (3, 100) and
contributes to the top-down control of attention (66) by shifting coupling patterns with different regions based on the target of attention (65). (C) IFS/IFJ seed
maps for each condition. For illustration purposes, we use a slightly liberal threshold to show the full extent of positively and negatively correlated voxels (Z >
2.57, P < 0.05, FDR cluster corrected). (D) Mean FC between the IFS/IFJ and DN and DAN nodes. Error bars reflect between-subject SEM.
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other extreme, heteromodal regions elaborate upon such in-
formation, allowing for abstract thought, reasoning, and mental
simulations of events (14–16). A number of important studies
have shown that the primary functional distinction between
the DAN and DN (22, 23, 61) is directly related to the brain’s
anatomical architecture, with DN regions being more physically
remote from primary sensorimotor cortices (14). Our findings
build upon this work and suggest that this distinction may be
carried forward into the organization of the FPCN. This provides
an understanding of how the FPCN and cognitive control may
relate to perceptual versus introspective modes of processing.
The DAN is activated when attention is directed in a top-down

manner to task-relevant objects and locations and also when in-
trinsically salient stimuli are detected (24–27, 29, 31, 62). Our
findings suggest a close relationship between FPCNB and the
DAN in the network topology. Moreover, we found that FPCNB
was associated with functional domains that are known to activate
the DAN. Specifically, FPCNB was significantly more associated
with topics related to attention and action than FPCNA. Prior
work suggests that FPCNB contributes to cognitive control by
flexibly encoding task-relevant information, including task rules
(e.g., stimulus-response mappings) and their relationship to
expected reward outcomes (2–4, 6, 63, 64). Notably, FPCNB re-
gions including the inferior frontal junction play a causal top-down
role in modulating the DAN and perceptual attention (65, 66). One
possibility is that FPCNB represents information about task context
in working memory and that the DAN translates this information
into commands to guide the deployment of spatial attention to
specific objects and locations (65, 66). By exerting top-down
control over the DAN, FPCNB may ensure that attention re-
mains focused on task-relevant perceptual information, rather
than salient, yet irrelevant stimuli, or task-irrelevant thoughts.
Thus, the role of FPCNB in executive control may be related to the
abstraction, monitoring, and manipulation of sensorimotor con-
tingencies to facilitate moment-to-moment interactions with the
environment.
In contrast, FPCNA regions are activated when attention is

directed toward one’s own thoughts and away from perceptual
inputs (67–69), for example, during tasks that require meta-
cognitive awareness (67, 70, 71), relational reasoning (72, 73),
multitasking and complex task sets (64, 74–77), stimulus-
independent and abstract thinking (38, 68, 78–81), mentalizing
(82), episodic memory (51, 83), future planning (5), and pro-
spective memory (84). Consistent with this, we found that FPCNA
was preferentially coupled with the DN, which plays a role in
bringing conceptual–associative knowledge to bear on current
thought and perception (33–35, 41, 85). Additionally, FPCNA was
associated with functional domains that are known to activate the
DN. Specifically, FPCNA was significantly more associated with

topics related to mentalizing and emotion than FPCNB. Thus,
FPCNA may preferentially contribute to executive control in the
context of introspective processes and enable modes of thought that
are relatively free from the constraints of concrete sensorimotor
interactions with the environment. A recent framework (41)
suggests that FPCNA (in particular the rostrolateral prefrontal
cortex), may contribute to the abstract “top-level management”
of thought, exerting a general constraint that keeps one’s focus
on task-relevant material, yet allowing for some degree of
spontaneous variability in thought. In this way, FPCNA may play
a role in regulating internal thoughts and emotions in service of
social reasoning, mental time travel (e.g., future goal planning),
and metacognitive awareness of emotional states. It may also
contribute to the performance of traditional cognitive control
tasks by allowing representations of abstract task rules and
temporally extended contexts to guide the implementation of
more concrete rules and actions (76, 86–88).
In every condition, including demanding cognitive control

tasks (rule use, Stroop, 2-back), we found robust coupling be-
tween FPCNA and the DN. Consistent with this, a recent study
found encoding of task-relevant information by the DN and in-
creased activation during demanding rule switches, suggesting
that it may contribute to some forms of cognitive control that
involve activating different cognitive contexts (89). We did find,
however, that the magnitude of FPCNA–DN coupling was re-
duced during the cognitive control tasks relative to other conditions,

Fig. 9. Mean between-network FC in each condition.

Fig. 10. Meta-analytic functional preference profile of FPCN subsystems. We
trained naive Bayes classifiers to predict the presence or absence of activation
in each FPCN subsystem using a set of 60 psychological topics and plotted
topics that were significantly positively associated with at least one subsystem.
Strength of association is measured in log odds ratio (LOR) with values greater
than 0 indicating that the presence of that topic in a study positively predicts
activity in a subsystem. Ninety-five percent confidence intervals derived using
bootstrapping are indicated, and topics differentially associated with each
system are highlighted in orange. WM, working memory.
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and was significantly lower than FPCNA–FPCNB coupling.
FPCNA was strongly aligned with the DN across the six condi-
tions in the primary dataset, which were designed to elicit mental
states that resemble those frequently experienced in everyday
life. Thus, the diminished relationship with the DN during the
traditional cognitive control tasks may represent the exception
rather than the rule. FPCNA may typically operate as an exten-
sion of the DN, but becomes coopted by FPCNB when it is
necessary to perform highly complex perceptually focused tasks.
Thus, while FPCNB may have evolved as an extension of the
DAN processing stream to allow for the regulation of visuo-
spatial perception and action during physical interactions with
the environment (e.g., tool use), FPCNA may have evolved as an
extension of the DN processing stream to allow for the regula-
tion of introspective processes such as complex social reasoning.
This proposal aligns with suggestion that there is an intimate
relationship between brain evolution, including expansion of the
anterior prefrontal cortex in humans (90), and the emergence of
complex social life (91). Moreover, it has been suggested that
some aspects of FPCNA anatomy may be unique to humans and
may underlie our exceptional capacity for higher-order thought
(73). However, the functional distinction between the FPCN
subsystems suggested here is just a starting point; a more elab-
orate theoretical framework will be required as work on the
FPCN progresses.

Relation to Other Models of Executive Control and Frontoparietal
Organization. According to one model, the FPCN is critical for
trial-by-trial adjustments in control, whereas a cingulo-opercular
network is critical for the maintenance of task goals across trials,
supporting a balance between flexibility and stability (1). Rapid
adjustments in control may occur via flexible task-dependent
shifts in FPCN coupling patterns (5, 7, 51). Another model
suggests that the salience network initiates shifts in modes of
information processing related to the FPCN and DN (92). Our
findings suggest an orthogonal dimension of executive control,
with different zones within the FPCN involved in visuospatial
attention and introspective processes. Broadly consistent with
this idea, a prior study revealed a functional distinction between
these subsystems that is relevant for understanding their contri-
butions to cognitive control. In particular, FPCNA regions were
associated with resolving uncertainty when monitoring internally
maintained task sequences, whereas FPCNB regions were more
associated with task complexity and execution (i.e., the number
of rule switches vs. rule repeats) (93). Recent work suggests a
distance from sensory-motor processing organizational principle,
with more complex and abstract processing occurring in regions
that are physically remote from primary sensory and motor
cortices (14, 16). Our findings suggest that FPCNA may be fur-
ther removed from sensory-motor processing than FPCNB.
Consistent with this, we observed that FPCNA but not FPCNB
nodes were negatively correlated with primary sensory-motor
regions (SI Appendix, Fig. S5). Thus, a general principle of
functional organization may apply across different brain net-
works (14) and within the FPCN itself.
Other work has emphasized that the FPCN is a flexible hub that

coordinates processing across other networks in a task-dependent
manner (5, 7, 94). In the current study, we found that FPCNA and
FPCNB were generally aligned with the DN and DAN, re-
spectively; however, there was also evidence that FC patterns
flexibly adapted to task demands. There were overall shifts in
FPCNA and FPCNB coupling patterns, as well as shifts in the
relative “preference” of coupling with the DN versus DAN. The
right IFS/IFJ node of FPCNB exhibited the strongest task-related
flexibility and was positively coupled with both DAN and DN
regions in some contexts. These findings are compatible with ev-
idence of adaptive coding properties in FPCN neurons (2) and
suggest that some FPCN nodes may be relatively domain general

in nature, consistent with the notion of a multiple demand system
(4). The organization noted here is thus fully compatible with
findings of task-dependent reconfiguration of FPCN FC patterns.
Additionally, some conceptions of the multiple demand network
emphasize FPCNB regions. The finding that some FPCNB nodes
are especially flexible is consistent with this work. To summarize,
we suggest that asymmetrical coupling patterns reflect a relative
and flexible difference between FPCNA and FPCNB, rather than
an absolute and fixed aspect of network architecture.

Limitations. One of the challenges in examining heterogeneity
within the FPCN it how to define this network to begin with.
Rather than select a single method, we used nodes based on three
different parcellations (Yeo, Gordon, and Power) that identified
the FPCN as a functional unit on the level of other functional
systems (e.g., visual and somatomotor networks). We then looked
for finer-grained heterogeneity within this system. While there was
broad agreement across parcellations in terms of the location of
nodes exhibiting preferential coupling with the DN versus DAN,
there were also some differences. To some extent, these differ-
ences arise from how the FPCN (as a whole network) was defined
in each case. Additionally, we observed individual variation in the
precise location of regions showing a bias toward the DN or DAN.
Indeed, the broad domain generality of the FPCN (95) may lead
to slight differences across individuals in the spatial distribution of
axonal projections to and from the DN and DAN during devel-
opment. Thus, while our findings suggest FPCN nodes show a
relative bias in connectivity toward the DN or DAN, it is impor-
tant to note that we are not arguing for a precise anatomical de-
marcation of two FPCN subsystems. A second issue is that our
range of tasks was not exhaustive, making it possible that different
network interactions could be observed in some contexts (e.g.,
positive coupling between the FPCNA and DAN). One instance
may be perceptual metacognition, which is known to rely on parts
of the FPCNA, including the rostrolateral prefrontal cortex (70).
Additionally, it is possible that the FPCN may not fractionate, but
rather, serve as a domain general resource during demanding tasks
that require considerable effort (4). However, our findings do
suggest that a FPCN fractionation can be observed in many di-
verse contexts. Finally, our analysis is limited by the reliance on
predefined network boundaries and the assumption of discrete
brain clusters/networks. Any brain parcellation is a dimensionality
reduction on a complex space and should be viewed as a general
guiding principle rather than a set of fixed and precise brain
network demarcations. Moreover, the network affiliation of a
given brain region can shift across time and context (60, 96). That
being said, our results provide evidence that spatially distinct parts
of the FPCN—as defined using three different parcellations—are
differentially coupled with the DN and DAN across a range
of contexts.

Conclusions
Executive control processes are multifaceted and likely rely on
multiple interacting, yet distinct neural systems. The current
work makes a step forward in discerning the network basis of
executive control and may offer predictions about clinical deficits
in control functions. For example, altered connectivity between
FPCNA and the DN may interfere with regulating self-referential
thoughts in conditions such as depression, whereas altered con-
nectivity between FPCNB and the DAN may interfere with
regulating visuospatial attention (e.g., focusing on goal-relevant
objects) in conditions such as ADHD.

Materials and Methods
See SI Appendix for complete details regarding data preprocessing and
analysis. Participants in the primary dataset (sample 1) were 24 healthy
adults (mean age = 30.33, SD = 4.80; 10 female; 22 right-handed), with no
history of head trauma or psychological conditions. This study was approved
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by the University of British Columbia Clinical Research Ethics Board, and all
participants provided written informed consent, and received payment ($20/h)
for their participation. Due to a technical error, data for the movie and
acceptance-based introspection conditions were not collected for one
participant. At the end of scanning, one participant reported experiencing
physical discomfort throughout the scan. Similar results were obtained with or
without inclusion of this participant’s data, so they were included in the
final analysis. Data for one participant was not included due to excessive
motion. This resulted in a final sample size of 23.

Primary Dataset Task Conditions. The primary dataset included six ecologically
valid task conditions in separate 6-min fMRI runs. Each task condition was
designed to elicit a continuous mental state and did not require any responses.
(i) Resting state. Participants lay in the scanner with their eyes closed and were
instructed to relax and stay awake and to allow their thoughts to flow nat-
urally. (ii) Movie watching. Participants watched a clip from the movie Star
Wars: Return of the Jedi and were instructed to pay attention to the actions of
the characters, and also to what they may be thinking and feeling. (iii) Art-
work analysis. Participants viewed four pieces of artwork in the scanner, each
for 90 s. These pieces were preselected by participants, and during scanning,
they were instructed to pay attention to the perceptual details of the art, their
inner experience (i.e., thoughts and feelings). (iv) Shopping task. While in the
scanner, participants viewed a prerecorded video shot from a first-person
perspective of items within several stores in a shopping mall. They were told
to imagine that they are going through the mall to find a birthday gift for a
friend and to analyze each item in terms of suitability based on their friend’s
preferences. (v) Evaluation-based introspection. Participants were asked to
think about a mildly upsetting issue involving a specific person in their life
(e.g., a friend, roommate, sibling, or partner), and asked to reflect on what the
person and situation means to them, what has happened in the past and may
happen in the future, and to analyze everything that is good or bad about the
situation. (vi) Acceptance-based introspection. Participants were asked to re-
flect on the same upsetting issue as in the previous case, but this time were
instructed to focus on moment-to-moment viscerosomatic sensation, and to
accept these sensations without any judgment or elaborative mental analysis.

Replication Datasets. We examined the generalizability of our results in
several additional (nonoverlapping) samples. Sample 2 (n = 15) performed a
rule-based cognitive control task that has been described in full elsewhere
(3). Briefly, participants used one of two rules (male/female face discrimi-
nation or abstract/concrete word meaning discrimination) to respond to vi-
sual stimuli on each trial. On some trials subjects could earn money by
responding quickly and accurately. The rules switched from trial to trial re-
quiring participants to actively represent and flexibly switch between the
different rules. Data from a single run (run 1 of 6) were analyzed; we did this
to be consistent with the other conditions, which involved data collected

from a single run. Sample 3 (n = 28) performed a color-word version of the
Stroop task with three conditions (congruent, incongruent, and neutral) and
were instructed to ignore the meaning of the printed word and respond to
the ink color in which the word was printed. Data were acquired in a single
run and accessed from the OpenfMRI database (accession no. ds000164) (97).
Sample 4 (n = 41) performed an N-back working memory task. Data were
accessed from the OpenfMRI database (accession no. ds000115) (98). We
analyzed the data from the task period during the demanding 2-back block
in control participants, during which they determined whether each letter
was the same as the letter shown two trials previously.

Hierarchical Clustering Analysis. We first created a group-averaged correlation
matrix reflecting mean FC across all participants and all six conditions in the
primary dataset. We then extracted the subgraph composed of within-FPCN FC
values and the subgraph composed of FPCN connections with the DN and DAN.
These subgraphs were separately submitted to the hierarchical clustering al-
gorithm (cluster v3.0, 1988, Stanford University), which used Spearman corre-
lation to determine distance and the average linkage method to cluster nodes.

SVM Classification Analysis. The SVM classifier was implemented with Rapid-
Miner software (99). The cost parameter, C, was set to 1, and the convergence
epsilon was set to 0.001. For each participant, we created a vector consisting of
FPCNA correlations (with other FPCN nodes or with DN and DAN nodes), and a
vector consisting of FPCNB correlations. The correlation vectors served as input
features and were assigned a value of 1 or −1 to specify the FPCN subsystem to
which they belonged. We tested the accuracy of the classifier using fourfold
cross-validation. We did not perform any type of iterative optimization or
feature selection, which should minimize the chance of overfitting. Permuta-
tion testing was used to obtain baseline classification accuracy.

Quantifying the Strength of Asymmetrical FC Patterns. To quantify the
strength of asymmetrical DN and DAN connections for FPCNA and FPCNB, we
computed a selectivity index. For each participant, we first computed the
averaged strength of FC between each FPCN node and the DN and the av-
erage strength of FC between each FPCN node and the DAN. This was done
by computing the mean of all relevant Fisher r-to-z transformed correlation
values. We then subtracted mean FC with the DAN from mean FC with the
DN. This difference score served as the selectivity index. We averaged across
values for all FPCNA nodes and all FPCNB nodes to derive the mean selectivity
index for each subsystem.

Analysis. Data and code to perform analyses is available at: https://github.
com/matthewldixon/FPCN_Heterogeneity. Additionally, Jupyter notebooks
with analysis code and data for the Neurosynth analyses are available at:
https://github.com/adelavega/fpcn_fractionation.
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